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Abstract 

Internal strain tensors describe the relative displace- 
ments of sublattices in stressed crystals in which some 
atoms occupy sites lacking inversion symmetry. The 
variation of IF(H)I 2 in such crystals is shown to depend 
on inner compliance tensors which are essentially 
products of internal strain tensors with the macro- 
scopic elastic compliance tensor. The forms of the inner 
compliance tensors and the uniaxial stress derivatives 
of IF(H)l 2 are tabulated for 20 simple crystal struc- 
tures in which the number of atoms per lattice point is 
2, 3 or 4. 

Introduction 

In connection with the formal expression of inner 
elasticity (Cousins, 1978a,b) a programme of measure- 
ment of internal strain tensors has been recently begun 
(Cousins, Gerward, Nielsen, Staun Olsen, Selsmark, 
Sheldon & Webster, 1982; Cousins, Gerward, Staun 
Olsen, Selsmark & Sheldon, 1982). 

In this paper a systematic examination of the 
simplest crystal structures with 2, 3 or 4 atoms per 
lattice point is presented with the aim of simplifying the 
selection of which diffraction peaks should be observed 
(as functions of uniaxial stress) if full sets of internal 
strain components are to be obtained. These results 
cover the structures where measurements on a limited 
number of selected reflections will provide sufficient 
information. If there are more than four atoms per 
lattice point the measurement of a large number of 
reflections will almost certainly be needed. 

An account of internal strain is given in § 2. It is 
similar to, but an improvement on, the earlier dis- 
cussion (Cousins, 1978a). In § 3 the formal results for 
the dependence of IF(H)I 2 on stress are derived for the 
general case and are then specialized to the case of 
uniaxial stress. Whilst these formal results apply 
equally to simple and complex structures no examples 
of the latter are discussed here. 

Inner compliance tensors prove to be the key 
quantities determining the effect of stress on IF(H)L 2. 
They are introduced by § 4 and the major part of this 
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section is devoted to the symmetry analysis of these 
tensors for 20 different simple crystal structures. The 
results are presented in tables. It is also shown how the 
internal strain tensors may be subsequently retrieved 
provided the elastic stiffness tensor for the crystal is 
known. 

In § 5 the stress dependence of IF(H)I 2 is tabulated 
for the 20 structures under discussion. 

2. Relative displacement, inner displacement and 
internal strain 

2.1. Condition for occurrence of  relative displace- 
ment 

If each lattice point in a crystal structure is 
associated with n distinguishable material units (atoms, 
ions, etc.) then the crystal can be considered as n 
interpenetrating identical sublattices LI, L2, . . . ,  L n. 
Every site on a given sublattice has the same symmetry 
but different sublattices may have different sym- 
metries. The group of point operations that embodies 
the symmetry of the environment of sites on L,~ will be 
denoted by G~. Compatibility with translational perio- 
dicity constrains G,~ to be one of the 32 point groups 
normally encountered in crystal classification. 

The occurrence of relative displacement can be 
illustrated by reference to Fig. 1 which shows 
schematically the effect of a homogeneous deformation, 
represented by the matrix J, on two sublattices L~ and 
L~. Fig. l(a) is the situation before the deformation J i s  
applied and Fig. 1 (b) shows what happens when both 
G,~ and G~ contain the inversion. The crucial role of the 
inversion is easily appreciated: if it is present in G~ then 
the equivalence of the vectors r and --r with respect to 
any site on L,~ prevents the atom at such a site from 
being preferentially displaced asymmetrically with 
respect to the environment. The same argument applies 
to the atoms on L~_. Since the atoms on L~ are part of 
the environment of those on L~ and conversely, it is a 
necessary condition for the occurrence of relative 
displacement that at least one of G~ and G~ should lack 
the inversion. Fig. 1 (c) shows the situation when such 
relative displacement occurs. 

© 1983 International Union of Crystallography 



258 INNER COMPLIANCE AND INTERNAL STRAIN TENSORS 

Vectors between lattice points on L,~ and L~ change 
under the homogeneous deformation according to 

r,~ = J r ~  + 8'~, (1) 

where 8 ~ = 0 if a = fl or if G~ and G~ both contain the 
inversion. 

Suppose that n¢ sites possess inversion symmetry. 
Then there will be (m - 1)m/2 distinct vectors 8 ~ 
wherem = n i f n ~ = 0 o r  1 w h i l s t m = n - n ~ +  1 if 
ni >__ 2. Of these vectors m - 1 at most can be 
independent and it is essential for the relative dis- 
placement vectors to be defined in a systematic way 
permitting easy enumeration. A system shown 
schematically in Figs. 2(a) and (b) proves satisfactory 
in this respect. It avoids some confusion if the two 
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Fig. 1. The relative displacement of two sublattices. In (a) the 

interlattice vector ~ is shown in the undeformed state. In (b) the 
interlattice vector has become J ~  due to uniform deformation in 
a situation where both sublattices have inversion symmetry. In 
(c) at least one sublattice lacks the inversion and relative 
displacement 8 ~ occurs. 

cases m = n and m 4: n are treated separately and we 
begin with the former. A row of n points, corre- 
sponding to the sublattice indices a, are numbered 
consecutively. If n I = 1 the site with inversion is the nth 
point. The straight links between adjacent points 
represent the vectors 8 a where 2, an interlattice index 
running from 1 to (n - 1)n/2, has been introduced to 
reduce the number of superscripts and to emphasize the 
shift from a sublattice approach to an interlattice one. 
Each of these links corresponds to a possibly indepen- 
dent 8 a. The sense of the 8 a is chosen so that the vector 
represents the relative displacement of the sublattice of 
higher index with respect to the one of lower index. A 
second row of n - 2 links joins pairs of points 
separated by an intervening point and represents the 
vectors 8 n to 82n-3. This procedure is continued until 
the (n - 1)th row where there is a final link between the 
first and last points representing 8 n(n-  1)/2. 

The relation of dependence is clear: the vector 
represented by the pth link in the qth row is equal to the 
sum of the vectors between the sublattice points p and 
p + q. The interlattice index is given by 

and 

~z=p + ½(q-- 1)(2n-- q) 

p + q - - 1  

8'~= Y. 8 a. (2a) 
.h .=p 

1 2 3 n 

n ( n -  1)/2 
v 

(a) 

1 2 3 m - l m m + l  n - - 1  n 
~ - > - ~  . . . .  0 - ~ -  

2n - 3 /  
I 

! 

I 
I 

/ 
" 1 + (  2 ) ( 2 n - - m + 1 ) / 2  / "  

f 

(b) 

Fig. 2. Assignment of sublattice and interlattice indices. The 
numbers above the points are sublattice indices and those on the 
links are interlattice indices. Indices corresponding to sites with 
inversion symmetry, if any, are placed on the right. If n i is the 
number of such sites then (a) illustrates n t = 0 or 1 in which case 
m = n and (b) illustrates n t > 2 in which case m = n - n t + 1 < n. 
Other details are explained in § 2.1. 
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From the scheme of Fig. 2(a) this last relation may be 
written alternatively in the form 

8 '~ = 8 a l a'~ (2b) 

where 2 runs from 1 to n - 1 and l a'~ = 1 i f '2  lies in the 
loop of zY and is zero otherwise. 

The case of m ~ n is illustrated in Fig. 2(b). The 
construction of the diagram is broadly as before. All 
sites with inversion symmetry are placed on the right 
and a vertical line has been drawn down from the first 
of these, which corresponds to sublattice m. Links 
exclusively to the right of the vertical line are shown 
dotted and correspond to zero relative displacements. 
The m(m - 1)/2 links exclusively to the left corre- 
spond to non-zero displacements. Links that cross the 
line are shown partly dotted and are equivalent to links 
with the same starting point but terminating at point m. 

If n~ >_ 1 the number of sites lacking inversion is 
necessarily even and m is thus odd. The maximum 
number of independent 84 is thereby reduced to 
(m- -  1)/2. 

2.2. Rotationally invariant parameters o f  inner dis- 
placement 

Although the matrix J and m - 1 vectors 8 a 
completely specify the deformed lattice they are not 
suitable parameters for thermodynamic purposes. This 
is because a rigid rotation R following J turns J into RJ  
and 8 a into R~i ~, but does not alter the strain energy. 
The problem is circumvented by defining the finite 
strain matrix r/and m - 1 vectors ~a by means of 

I + 2 r /=  arJ (3) 

and 

~a=arSa 2 = 1 , 2  . . . .  , m - l ,  (4) 

where the tilde denotes transposition. If n I > 2 (i.e. 
there are two or more sites with inversion symmetry) 
then 

~ a = 0 ,  2 = m , m +  1 , . . . , n -  1. (5) 

The remaining g'~ are defined by 

~" = ~ l ~'~, zc = n, n + 1, . . . ,  n(n - 1)/2 

using the prescription of § 2.1. Rotational invariance 
for the inner displacement vectors g" is assured because 
/~R = I for a rigid rotation. 

2.3. Internal strain tensors 

Since the inner displacement is the crystal response 
to the imposition of f ini te  strain each inner dis- 
placement vector can be expressed as a Taylor series in 
the components of the finite strain matrix: 

Oklm ~jk ~]lm + " ' "  

2 = 1 , 2 , . . . , m - 1 ,  

where there is no constant term since ga = 0 when 
r / =  0. The coefficients A~k and A ljkt m are components 
of the internal strain tensors. Since r/is symmetric the 
usual Voigt contraction of suffixes and the con- 
ventional modifications of magnitude may be employed 
(011 ~ 01'  0"]23 = r]32 ~ ½/'14' etc.) and the above equation 
re-written as 

¢ia=A~rls+½A~Krlsrl~+.. . ,  2 = 1, 2 , . . . ,  m -  1,(8) 

where A ~t __, A ~ without change of magnitude. uk 
It can be shown (Cousins, 1978a) that the second 

term on the right of (8) has no effect on the elasticity of 
the crystal below the fourth order and may be ignored. 
We are left with up to m - 1 independent internal strain 
tensors defined by 

~ta=Ahq, ,  2 =  1,2 . . . . .  m - 1  (9) 

and, by invoking (6), a number of dependent ones 
defined by 

A ? s = A ~ l  a", n =  n ,n  + 1 , . . . , n ( n -  1)/2, (10) 

where 2 is summed 1 to m - 1 and where, again, if 
n~_>2 

A ~ = 0 ,  2 = m , m +  1 . . . .  , n - 1 .  (11) 

The effect of symmetry on the components of the 
internal strain tensors is fully covered by Cousins 
(1978b) and illustrated for corundum by Cousins 
(1981). When such an analysis has been completed for 
a given crystal structure a further simplification may be 
obtained as a result of geometrical conditions embodied 
by (10) and (11) and illustrated in Fig. 2. 

3. Effect of  relative displacement on IF(H)I 2 in a 
homogeneous ly  deformed crystal 

3.1. General considerations 

Consider an unstrained crystal with n atoms or ions 
per lattice point at position x '~, a -- 1, 2, . . . .  n. The 
structure factor for Bragg diffraction from planes 
whose reflection vector is H is then 

(6) F ( H ) - -  Z f~(O,2)exp(i2zcH.x ~) (12) 

so that 

IF(H)I 2 =  ~ 1f,~(0,2)} 2 

t r= l /3=1  

x exp[i2z~H.(x~- x~)], (13) 

where f~ (0,2) is the scattering factor for radiation of 
wavelength 2 for atom/ion a through 20, 0 is the Bragg 
angle and the prime on the double summation indicates 

(7) that terms in which a = p have been treated separately. 
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We now introduce the interlattice index n [running 
from 1 to n(n - 1)/2 as in § 2.1] and write 

IF(H)I 2= ~. {f,,(O,A)} 2 
t~=l 

n(n-- 1)/2 
+ 2 ~. g~(O,2)cos[27tH.(Ax)'q, (14) 

rr=l 

where (Ax)" = x/~- x '~ and g,~(O,2) -= f~(O,2)f#(O,2). 
Suppose now that the crystal is homogeneously 

deformed so that x * becomes x ''~ etc. and H becomes 
H'. By (1) we have 

( A x ' ) ~ = J ( A x )  ~ + 8~ (15) 

and, because H belongs to the reciprocal lattice, 

H' = J'-X H. (16) 

The principal quantities affecting the intensity as a 
result of structure-factor variation are the arguments of 
the cosine in (14). These phases will be denoted by ;(~. 
Using (3), (4), (15) and (16) we obtain 

X~"-- 2n i l ' .  (Ax')" = 2~tH. (Ax) ~ + 27rH(I + 2r/)-lA~ r/ 

o r  

X~l" = Z~ + ~'~, (17) 

where, on introducing contracted tensor notation, the 
change of phase 

V~= 2~d-/t(I + 2r/)blAT~ r b. (18) 

Since this is already a small quantity on account of the 
factor r b we can replace (I  + 2r/) -1 by the identity 
matrix. Furthermore, the finite strain is related to the 
thermodynamic tension t through the compliance 
matrix S by ~/s = Ssr tr" In the limit of small stresses 
the thermodynamic tension is just the applied stress o 
so (18) reduces to 

~ = 2nI-I~Ab S~r tr r.  (19) 

The equivalent of (14) for the stressed crystal is thus 

IF(H)I 2= ~. {fo,(O,2)} 2 
t~=l 

n(n- 1)/2 
+ 2 Z g,~(O,2)cos(x~ + ~'~). (20) 

7g----1 

Absolute changes in IF(H)I 2 are given by the 
difference between (20) and (14): 

n(n-- 1)/2 
AIF(H)I 2 = 2 Y g,,(8,~.) [cos(x~ + V~) - cos X~], 

~t=l 

(21) 

which, since ~,fi is small, reduces to 

AIF(H)I 2-- -- Y. g~(0,2) [2~,fi sin Z~ + (~/~)2 cos Z~], 
n~ In*} 

(22) 

where {~z*} is the set of zc values for which the A ~ do 
not vanish. The smallness of ~,~ leads to further 
simplification. If there is one value of zc in {r r*} for 
which sin Z6 ~e 0 then (22) becomes essentially linear 
in ~,~: 

AIF(H) I2=- -2  ~ g~(O,2) ~,~ sinx~, (23) 
n~ In**} 

where {n**} is the subset of {z r*} for which sin ,Zg ~ 0. 
If { 7r** } is an empty set then (22) becomes 

A I F ( H )  1 2 =  - Z g , r ( O , ' ~ ) ( ~ )  2 c o s  XI~. ( 2 4 )  
n~ In*} 

3.2. Uniaxial stress dependence o f  IF(H) I 2 

If the stress is uniaxial with axis [l~12l 3] and of 
magnitude tr (positive for tensile stress) we may  write 
trr = A r e  where A K = It l j, K being the Voigt 
contraction of ij. Equation (19) thus gives 

- -  : - -  - 2rd-I~AbS~rA K (25) 
c0e tr 

and the stress derivatives of (23) and (24) are 

COlF(H)I 2 2 
- ~ g~(O,;t) V~ sin ZI~ (26) 

C&r O 
ne In**} 

and 

c01F(H)I  2 2 
- ~ g~(0,2)(V~) 2 cos ,~.  (27) 

C&r t7 
n~ {n*} 

4. The inner compliance J?" 

Equations (23) and (24) show that the stress-induced 
changes in IF(H)I 2 are given by linear combinations of 
~'~ or (~,~)2. Let us take (19) for the change of relative 
phase and express it as a matrix product for the general 
case of triclinic symmetry: 

- n - n - 13 zx 14"x 15"x 16 / 

~/fi = 27r[h 1 h2h3] [A~xA~2A"23 A-n24 A -~25 A -~26 / 
/ / 
Lf 13 " ' 3  "" ] A~l,dn2z]~ A n  ,dn , d , r /  33 ,134 "" 35 "~ 36_] 

--Sll S12 S13 S14 $15 S16- "-Ol 

$12 $22 $23 $24 $25 $26 a2 

S13 S23 S33 S34 S35 S36 0" 3 
x , (28) 

$14 S24 $34 S44 $45 S46 0 4 

S15 $25 $35 $45 $55 $56 0" 5 

_$16 $26 $36 $46 $54 $64_ _a4 

where the definitions h -- aH and ,4~ - (1 /a )A"  remove 
compensating dimensional factors from two of the 
matrices. The properties of the crystal determine the 



C. S. G. COUSINS 

central product ,4" S. From diffraction experiments we 
expect to obtain the components of these (3 × 6) 
matrices, which we shall call inner compliances and 
denote by 27 '~, where 

Z'~ - . 4 b  S ~ . (29) 

When all the Z'~x have been found the reduced internal 
- 

strain components A 7J may be retrieved through the use 
of the elastic stiffness matrix C via 

,47j = X~ CKj (30) 

since S~x Cr t  = ~j~. 
The point symmetry of ,4" is the same as that of 

(Ax)" and is thus a subgroup of the Laue_group. This 
means that Z'" has the same symmetry as A'~. In Table 
1 are shown the non-zero components of ,4'~, taken 
from Cousins (1978b, Table 10) and of S~x, taken from 
Nye (1957). It will be noted from the Table that whilst 
Z ''~ has the same form as A" for a particular point 
group, there are certain differences between the 
relations of dependence between the components of,4" 

Table 1. Forms of  the tensors A~ and ,F,~ for standard 
settings of  the different point groups and of  S for 

different Laue groups 

(i . . . .  !) 

(i . . . .  !) 

m (! . . . .  i) 

nm2C . . . .  i) 

1 

M 

2/m 

o (i:i) 
mmm 

TII  

4/m 

T I  

4/mmm 

6 i ) 

622~" " " ..~." i) 

5mm(i : " .I.. ~ 

6m2 ( . ~ )  

432 No components 

43m(i ' " ~".~) 

R I I l " ~  ! ~ 

3 

R I  

~m 
H I I  

6/m 

H I  

As for H II 

6/mmm 

C I  
As for  C II 

m3m 

4 (.~ - .~. !) 

) 

;mm(i : ' /.. i ) 

 m2(! " ) 

Notation: • zero component; • non-zero component; 0--------~_ equal 
components; • O equal and opposite components; (~) in A" equals 
O component to which it is joined; ~) in ~'" equals twice the O com- 
ponent to which it is joined; ~) in S equals twice the • component to 
which it is joined; x in S indicates that S6s = 2(S H - S~2). 

261 

in trigonal and certain hexagonal classes and the 
corresponding relations in Z'". The difference is a factor 
of 2 that occurs in the Z'" relations but not in the A" 
relations. The reason is that ,4" relates a vector (g") to 
the contracted form of a second-order tensor (r/) in 
which conventional changes of magnitude have been 
made (r/23 --, ½r/4 etc.), whereas Z'" relates 1~" to a 
second-order tensor (tr) in which no such changes have 
been made. 

Sometimes the symmetry elements pertaining t o / i "  
and Z '~ will not be in the standard settings assumed in 
Table 1. In these cases the tensor transformation law 
will have to be applied in order to get the components 
appropriate to the variant setting (Cousins, 1978b, § 4). 
The fact that the ,4'~ and ~r~ tensors conform to 
symmetry considerations and have the forms appro- 
priate to certain point groups does not preclude further 
simplifications (vanishing of elements or additional 
relations) following from the geometrical dependence 
mentioned in § 2.3. 

4.1. Application to specific structures 

Twenty structures have been chosen to illustrate the 
cases m = 2, 3 and 4. They were taken from Slater 
(1965) and Galasso (1970). Table 2 contains infor- 
mation on these structures and indicates how sub- 
lattice indices have been assigned to atomic positions. 
These positions are given in order from lowest to 

Table 2. Allocation of  sublattice indices to atomic 
positions in 20 crystal structures 

Sublattice indices 

Space I 2 3 4 
Structure group Allocated to atomic positions 

m = 2 n = 2  
Diamond Fd3m 000 ~ 
Zincblende F43m 000 : ~ 
HCP P63/mmc ~ ~]  
Tungsten carbide P6m2 ]~½ : 000 
White tin 14~/amd 000 04~ 
a-Uranium Cmcm Ov~ Of)] 
Arsenic R3m OOw OOfv 
m = 3 n t = l n = 3  
Fluorite Fm3m ~ ~ : 000 
Samarium R3m OOw OOfv : 000 
Cadmium chloride R3m OOw OOfv : 000 
Cadmium iodide P3ml ~]w ~¢v : 000 
m = 3 n t = O n = 3  
Selenium P3~21 u0~ 0u~ t~t)0 
m = 3 n l = 2 n = 4  
DHCP P6a/mmc ~ ~ : 000 004 
?Nickel arsenide P63/rnmc ~ ~ : 000 004 
m = 4 n ~ = O n = 4  
Graphite P63mc ~0  ~4 : 000 004 
Wurtzite P63mc ~]w ~4 + w : ~0  ~]0 
Nickel arsenide P63mc ~w  ~4 + w : 000 004 
Iodine/gallium Cmca Ovw Of)Or 4v 4 - w 464 + w 
Lead oxide P4/nmm 04w 40fv : 000 440 
fl-Neptunium P4212 04w 40~i, : 000 440 
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highest symmetry. The structures are grouped accord- 
ing to values of  m. It should be noted that the samarium 
and cadmium chloride structures as well as the double 
hexagonal close-packed and ?nickel arsenide struc- 
tures differ only in that the atoms are identical in the 

Table 3. The symmetry and form o f  the inner 
compliance tensor and the relative phase f o r  crystal 

structures with m = 2 
Symmetry* 

Structure of E 2; ;(/2n 

Diamond 43m . . . .  ~ ]  h + k + 1 
zinc n  [ 4 

HCP 6m2 1- . . . . .  2a-I h - k 1 

Tungsten [ 1 q carbide a - a  . . . .  3 2 

aa ] 
a-Uranium m2m - 2 v k  + - 

2 

3m [! • 

*Independent components: diamond, zincblende 1; HCP, tungsten 
carbide I ; white tin 2; a-uranium 5, arsenic 4. 

Table 4. The symmetry and forms of  the inner 
compliance tensors and the relative phases for  crystal 

structures with m = 3 

Structure n 

Fluorite 1 
El = --22,'2 

2 

27z= 

Symmetry* 
o f  Z "  

Samarium 
Cadmium 

chloride 

43m 

Z' /2rr  

h + k + l  

2 

h + k + l  
43m 

4 
• . . a . 

. . . .  ¢.1 

h + k + l  
43m 

4 
2 7 3  = _ 2 , ' 2  

2 7 1  = 

273= 

1 3 m  - 2 w l  

_22'2 

2 3m wl 

Iiii! i] 
3 3m - w l  

_ _ ~ ' 2  

Structure 

Cadmium 
iodide 

Selenium 

DHCP 
?Nickel 

arsenide 

1 

27,, = _2z'2 

2 

Z'2-- [ " 

b 

3 

2;3 = _2;2 

Table 4 (cont.) 

Symmetry* 
of E" 

3 m  

3m 

• a . 

• Q . 

b c 

3m 

1 m.L(a I + a2) 

c' b' d' a' 

- b "  - c "  - d "  a"  

--e" e" - - f "  

2 m_l_a~ 

a c - b J  b c d - a  . 

e - e  f 

3 m-La2 

Z~/2n 

h - k  
- 2 w l  

3 

h - k  
- - +  wl 

3 

h - k  
- - -  - w l  

3 

l 
-u(h - k) + - 

3 

--a" --(c" -- b " ) ]  
/ 

a' (c' - b') I 
f '  2e' J 

l 
--u(h + 2k) + - 

3 

c' b' d'  a' a"  ( c " - b " ) ]  

/ 273= b" c" d"  - a "  a' ( c ' - b ' )  

e" - e "  . f "  f '  2e' J 

p' = V/3p,'2, q" = q/2 

1 6m2 

El = - 2 S  2 

2 3m 

3 6 /mmm 

272= 

273=0 

4 3m 

X 4 = - Z  ~ 

5 3m 

E 5 = Z 2 

6 3m 

E 6 = _L'z 

1 
- u ( 2 h  + k ) - -  

3 

h - k  l 
+ 

3 2 

h - k  l 
+ - -  

3 4 

l 

h - k  1 

3 4 

h - k  l 

3 4 

h - k  1 
- - - - . 4 - - -  

3 4 

* Independent components: fluorite 1; samarium, cadmium chloride 3; 
cadmium iodide 3; selenium 6; DHCP, ?nickel arsenide 1. 

first member of each pair but are different in the 
second. A doubt regarding the structure of nickel 
arsenide accounts for the two entries under this name. 

4.1.1. Structures with m = 2. There is only one 
interlattice index (n = 1) in these structures and it may 
be omitted without ambiguity. The point symmetry of 



C. S. G. COUSINS 263 

the inner compliance tensor is deduced precisely as 
described in detail for the internal strain tensors in 
corundum (Cousins, 1981). The form of the tensor can 
now be taken either directly from Table 1 if the point 
symmetry corresponds to one of the standard settings 
or by transforming the entry in Table 1 if a variant 
setting is encountered. Examples of variant settings 
occur in white tin (~,m2 rather than zi,2m) and in 
a-uranium where the diad is parallel to Ox 2 rather than 
Ox 3. The results are presented in Table 3. The relative 
phase X is also listed. 

4.1.2. Structures with m = 3 and m = 4. Tables 4 
and 5 contain the results for the cases of m = 3 and 
m = 4 respectively. The same procedures are used as 
for m -- 2 to determine the effect of crystal symmetry. 
There is now, however, the possibility of further 
simplification through geometrical conditions: 273 = 
2 1 + 272 when n = 3 and  2 4 - 2 1 + 272, 275 _ 272 + 273 
and 276 - 271 + 272 + 273 when n = 4. These relations of 
dependence also extend to the relative phases Z '~ by 
virtue of definition. 

5. U n i a x l a l  s tress  der ivat ives  o f  IF(H)I 2 in 2 0  s imple  
s tructures  

The determination of all components of the inner 
compliance tensors of a particular crystal will in 

Table 5. The symmetry and forms of  the inner .  
compliance tensors and the relative phases for  crystal 

structures with m = 4 

S y m m e t r y *  
S t ruc tu re  n o f  2; ~ ~ / 2 n  

h - k  1 
Graphite 1 6m2 + 

3 2 

/ ; 1  = 

/ ; 2 =  

2a - 2 a  . . . 

. . . .  

3m 

- ( a + b )  ( a + b )  

d d 

3 6m2 

[ . . . .  1 2;3 = b - 2 b  . . . .  

4 3m 

/;4= 2.1 + L.z 
5 3m 

Z 5 = 2'2 + Z'~ 

6 3m 

~'6 = .L,I + 2 .2  + ) . .J  

h - k  1 
+ 

3 2 

h - k  

• c" c. -2(a.+b)] 

e . 

I 

3 

h - k  

3 

h - k  

Structure 

Wurtzite 

Nickel 
arsenide 

Table 5 (cont.) 

S y m m e t r y *  
o f  Z "  Z"/2n 

1 6m2 

2 3m 

h - k  1 

3 2 

h - k  I 
wl  

3 2 

/ ; 2  . . . .  c -2(a + b) 1 
- ( a + b )  ( a + b )  e . . 

d d e 

h - k  1 
3 6m2 + 

3 2 

4 3 m  - w l  

/ ; 4 = / ; ~  + Z 2  

5 3m - w l  

/ ;5  = / ;2  + Z3 
h - k  l 

6 3m - -  + - - wl  
3 2 

/ ; 6 =  /;1 + Z-2 + Z3 

/ ; I  = 

/ ;2  = 

h - k  
1 6m2 

3 

h - k  1 
2 3m ~ + - -  wl  

3 2 

I a l  + • . . c - 2 ( a + b ) ]  
-( b) (a + b) c . . 

d e 

1 
m + _  

2 

3 6rn2 

4 3m 

Z 4 = 2,'t + 2,'2 

5 3m 

Z'~ = 2,'2 + 2,'3 .~ 

6 3m 

Z6= 2,', + 2, .2 + X -~ 

h - k  
_ m _  w l  

3 

h - k  
- wl 

3 

h - k  1 

3 2 

* Independent components: graphite 5: wurtzite 5: nickel arsenide 5. 
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Struc ture  

Iodine/gallium 1 

Z l  = 274 _ Z2 

Table 5 (cont.) Table 5 (cont.) 

S y m m e t r y *  
S y m m e t r y *  

o f  Z ~ Z"12rt Structure  n o f  2; ~ 

fl-Neptunium 1 4ram 
m_l_Ox t - 2 v k  - 2wl 

2 m2m 

272 
[! . . . .  :] 

c d . . 

• . e . . 

3 

279 = _(Z4 + Z2) 

4 mm2 

m_LOx t 

~ 4  _~_ i " " " f !] g • 

i j  

5 

Zs = -274 

ram2 

6 

,F, 6 = --272 

m2m 

Lead oxide 1 4mm 

2~1= 2a . 

2b 2c 

2 ram2 

e) (e - b) - c  

d - a  

3 4m2 

- 2 d  . 

I ~.~ • 

4 ram2 

~ 4  

b i  . a + d  
e . b + e  c 

5 

Z$ : __~4 

m m 2  

6 ram2 

~6 = _272 

h + l Z l =  2a . 

+ 2vk 2b 2c 
2 

- 2 v k  + 2wl 

h + l  
- 2wl 

2 

h + l  
+ 2wl 

2 

h + l  
- 2vk 

2 

h + k  
- 2wl 

2 

h 
- +  wl 
2 

-(a + !] 

h + k  

k 
- - wl 
2 

k 
- +  wl 
2 

h 
- - - -  W l  
2 

272 .~_ 

~ 4  

h 
2 211Ox3 - + wl 

2 

Z'/2n 
h + k  

- - -  2wl 
2 

- (a  + a) - f  

(b'+ e) ( e - b )  - c  

3 4m2 

- 2 d  . 

- 2 e  . 

4 211Ox 3 

• o - d  

e b + e  c 

h + k  

k 
- - wl 
2 

275 

5 

[ei 
2 IlOx 3 

b -(b + e) -c 

f 
d - a  

k 
- +  wl 
2 

-Ca + a) .] 
- f  

6 2 IlOx 3 
h 
- - wl 
2 

~ 6  • f a - d  i] 
a + d - f  

b + e  b - e  e 

* Independent components: iodine/gallium 10; lead oxide 5; 
~-neptunium 6. 

general require the values of d lF(I-I)l 2/do" for a number 
of reflections and various axes of stress. These stress 
derivatives depend on ~ and (26) and (27) show that 
the different V~ in a particular structure are coupled by 
relative phase terms (sin X~ or cos ~,~) as well as by 
quadratic terms in the form factors. The choice of 
reflections and stress axes is most easily discussed in 
connection with structures for which m = 2. 

5.1. Structures with m = 2 
In terms of the inner compliance tensor, (28) may be 

written 
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] 
F'~II '~'12 '~13 '~14 '~'15 "~16] [2 4 

1 12/31 
LZ'~" ~32 Z33 Z34 Z35 Z36] t3t,| 

J,M 
(31) 

I f  both h and ! lie along coordinate axes then ~H 
depends solely on a single 27 u component from the first 
three columns. For example, if h = [h~00] and I = [010] 
then ~ .  = 2 7 t a h ~ q 2 .  Elements in the second three 
columns can be isolated by observing a particular 
reflection under two distinct stress axes: if h = [h~00] 
and ! -+ = [11 ,+_12 ,0 ]  then ~'~i = 27ttTh1(Z'H / 2 + Z'12122 --+ 
Z ' 1 6 1 1 / 2 )  from which, by subtraction, 2716 may be 
isolated. 

The presence of the relative phase Xn causes possible 
reflections to be divided into different classes. In Table 
6 are presented the specific forms of od lF(H) l  2/do and 
IF(H)I 2 for these different classes for each of the 
structures with m = 2. When there are v lattice points in 
the unit cell the values of I F(H)I 2 and its derivatives 
must be multiplied by v 2. This is included in the table 
and indicates that for arsenic a hexagonal cell (three 
lattice points) has been preferred to the primitive 
rhombohedral  cell. 

In certain structures it will be seen that IF(H)I02 is 
zero for certain reflection classes. This occurs when the 
structure is non-symmorphic (i.e. it contains screw axes 
and/or glide planes). These are sometimes strictly 
forbidden (e.g. 002 in diamond) or weakly allowed (e.g. 
222 in diamond). In the latter case the appearance of 
the reflection indicates an aspherical electron distri- 
bution and anisotropic and anharmonic atomic 
motions. Measurements on strictly forbidden reflections 
are useful because the induced reflection is totally due 
to the application of stress. 

5.2. S t r u c t u r e s  wi th  rn = 3 a n d  rn = 4 

Tables 7 and 8 contain the same kind of information 
as Table 6 but for structures with m = 3 and m = 4. In 
Table 8 there are certain reflections where the stress 
derivatives of IF(H) I 2 involve a complicated quadratic 
function of the ~ .  These are unlikely to be of value in 
the determination of the inner compliance tensors and 
have been omitted, their absence being denoted by the 
letter Q. 

6. Concluding remarks 

The inner compliance tensors and the internal strain 
tensors of  crystals with 2, 3 or 4 atoms per lattice point 
may be determined by observing the uniaxial stress 
dependence of  the intensity of selected reflections. 

Table 6. IF(H) I 2 a n d  tr d l F ( H )  12/dtr f o r  s t ruc tures  wi th  m = 2 

S t r u c t u r e  R e f l e c t i o n  c o n d i t i o n s  

D i a m o n d  h + k + l = 4n 

4 n +  1 
4 n + 2  

Zincblende  h + k + l = 4n 

4 n +  1 
4 n + 2  

H C P  h - k = 3m, l = 2n 
2 n +  1 

3m + 1 2n 
2 n +  1 

Tungsten carbide  h - k = 3m, l = 2n 
2 n +  1 

3m + I 2n 
2 n +  1 

Whi te  tin 2k + l = 4n 

4 n +  1 
4 n +  2 

a -Uran ium k = 0 l = 2n 
2 n +  1 

0 "2n 
2 n +  1 

8 = 2nvk 

Arsenic  

O = 2nwl 

64f • 
32f ~ 
0 

16(~ +f2) 2 
1 6 ( f  2 + f~)  

16(./'1 - - f2)  2 

4f ~ 
0 

f '  
3f 2 

(A +A) 2 
(Z -A)'  
f~ + f l -  A A  
f ~, + f~ + A A  
16./" 2 

Sf ~ 
0 

16f 2 

0 
8 p ( 1  + cos 20) 
8f2(1 --  COS 28) 

o d I F ( H )  I 2/dr7 

T-32f 2 

~32f~f2 ~ 

~-~3f' ~, 
+ v ~ f  2 u/ 

T" v/3f l  A 

"T-8f 2 ¢ 

8./" 2 sin 20~, 

- - S f  2 sin 2 8 ~  

-32f~C..,), 

3 2f2(lff) 2 

-32f, f,(~,)~ 

32Afg~,)' 
--2f2(1~/) 2 

2fff~,)~ 

-2fxA(~,) 2 
2AA(~,) 2 

-sf~(~) 2 

sf'(~,) 2 
-8f2(g/) 2 

8f2(g/) 2 

l = 0  
l q : O  

36f~ 
18f2(1 + cos 28) 

-18f2(~) 2 
18f 2 sin 28~g 
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Table 7. IF(H) I 2 a n d  o d IF(H)  12/do f o r  s t ructures  with m = 3 

Struc ture  Reflect ion condi t ions  

Fluorite h + k + l = 4n 
4 n +  1 
4 n + 2  

Samarium 

0 =  2nwl 

Cadmium chloride 

0 = 2nwl 

Cadmium iodide 

0 = 2ravl 
Selenium 

0 = 2rcuh 
~o = 2nuk 

DHCP 

?Nickel arsenide 

l = 0  
l~eO 

l = 0  
l ¢ 0  

I F(H)o 2 o d IF(H) I2/do 

16 (2f, +f3) 2 
16f 2 T- 64f~ f3 ~2 
16(2f~ --f3) 2 

81f  2 
9f2(1 + 2 COS 0) 2 - - 3 6 f  2 sin 0(1 + 2 cos 0) ~,2 

9(2fl +f3) 2 
9(2f l cos 0 +f3) 2 - 3 6 f l  sin 0(2fl cos 0 +f3) ~,2 

h - k = 3m, 

3 m +  1 

h = k = 0  

h = k ¢ 0  
h = - 2 k  ¢ 0 
2h = - k  :/: 0 
h = k ¢ O  

h = - 2 k  ¢ 0 

2h = - k  :/: 0 

1 = 0  
¢ 0  
= 0  
~ 0  

l = 3 n  
3n+ 1 

l =  3n 

3n+ 1 

(2f, + A )  ~ 
(2Z cos 0 + A )  2 
( Z  - f 3 )  2 
[ft(cos 0 + v ~ s i n  0) -f312 

f 2  

0 
f 2 ( 5  + 4 cos 30) 
f2(5 + 4 cos 3~0) 
f2(5 + 4cos30)  
2f2(1 - cos 30) 

2./'2(1 - -  COS 3~) 

2 f 2 ( 1  - -  COS 30) 

- 4 f l  sin 0(2f~ cos 0 +f3) q t2 

_+ 2VSA(f, -A) v: 
2fl{ ( f  t sin 20 +f3 sin 0) 

+ V / 3 ( f ,  COS 20--f3 COS 0)} gt 2 

2f2 sin 3~(I//2 + I//3) 
- -2f  2 sin 3~(1//3 + I//1) 

2 f  2 sin 3 6 ~  l -- ~2) 
--f2{sin 30(~ 2 + i//3) 

_+ v~(1  - cos 30) ~,' } 
f2{sin 3~(~ 3 + gP) 

z- v:3(I - cos 3~) ~2} 
_f2{sin 30(~1 _ ~2) 

v/~(1 - cos 30) ~3 t 

h - k = 3 m  

3 m +  1 

h - k =  3m 

3 m +  1 

l = 4 n  
4n 
4n 
4n 
4n 
4n 

l =  4n 
4n 
4n 
4n 
4n 
4n 

16f 2 
+ 1  0 
+ 2  0 

f~ ~ 2v5:  v: 
+_ 1 3f  2 "T- 2V/~3f 2 I//2* 
+ 2 9 f  2 +_ 6v /3 f  2 i//2 

4( f ,  +fa)  z 
+ 1  0 
+ 2 4 ( f , - - A )  2 

+_ 1 3 f  2 -T- 2 v ~ f l  V/ 
+ 2 (f~ + 2f3) 2 + 6x /~ f t ( f t  + 2f3) ~,2 

* Alternative sign comes from the l condition. 

-64f~ (2f~ + f3)(V2) 2 

-64 f l  (2fl -f3)(~ '2)  2 

- 108f2(u/2) 2 

-36Z(2f, +A)(~:) 2 

-4f1(2L +A)(~,2) 2 

--2f2I(1~/1)2 -t - (1~2)2 -t - (1~/3) 2 } 

f2{ ( I / /1 )2  + (I/,/2) 2 + (I//3) 2 } 

- -  16f2(1~/2) 2 

8f2(1~/2) 2 

0 

-sf ,(f l  +f3)(~) 2 
8f~(~92 

- s f  ~(Z - f 3)(~:) ~ 

Increasing complexity of expressions for this depen- 
dence, already evident in Table 8, suggests that 
structures with five or more atoms per lattice point will 
require a different type of investigation. One possibility 
would be the automatic collection of a large number of 
reflections from the stressed crystal in a structure- 
determination configuration. The changes in IF(H)I 2 on 
going from the unstressed to the stressed crystal could 
then be made to yield the components of the inner 
compliance tensors by an optimization procedure. 

Only three materials have so far had their internal 
strain tensors determined. Silicon and germanium were 
first investigated by Segmtiller (1963, 1964) and 
Segmiiller & Neyer (1965) and recently by Cousins, 
Gerward, Nielsen et al. (1982), Cousins, Gerward, 
Staun Olsen et al. (1982) and (Si only) by d'Amour, 
Denner, Schulz & Cardona (1982). For both materials 

the single dimensionless internal strain parameter ,] has 
the magnitude ~0.18 and is accurate to about 5%. 
Gallium arsenide was investigated by Koumelis & 
Rozis (1975) and by Koumelis, Zardas, Londos & 
Leventouri (1976). Their result corresponds to 
141 ~_ 0.19, although a reanalysis of their data, 
undertaken as a preliminary to planned work on III-V 
compounds, suggests that the figure should be higher. 

In the meantime there is a great opportunity for 
work on crystals belonging to the 20 structures 
described in this paper. Two considerations make such 
work desirable. Firstly, the internal strain tensors are 
potentially of great value in the assessment of models of 
bonding and cohesion where they take their place 
alongside the ordinary elastic constants. Secondly, 
there are many experiments performed where uniaxial 
stress is used to remove a degeneracy or probe some 



C. S. G. COUSINS 267 

Table 8. IF(H) I02 and e d IF(H) 12/dofor structures with rn = 4 

The letter Q indicates the omiss ion  o f  a compl ica ted  quadra t i c  express ion 

Structure Reflect ion condi t ions  IF(H)  I o 2 

Graphite h - k = 3m l = 2n 16f 2 
2 n +  1 0 

3m + 1 2n f 2  + v / 3 f  2 9 '  
2n + 1 3 f  2 + X/'3f2(91 -- 21,73) 

Wurtzite h - k = 3m 1 = 2n 4( f2  + f2  + 2f, f 3 cos 0) 4flf3 sin 009' + 292 + 93) 
2 n +  1 0 

o dlF(H)12/da 

3m+ 1 2n f ~ + f 2 + 2 f l f 3 c o s O  f ,  f3sin 0091 + 2gt2 + ~3) 
¥ V/3[ f  ( 91 +f32 93 
+ f ,  f3cos 0(91 + q/3)] 

2 n +  1 3 ( f ~ + f ~ + 2 f l L c o s O )  3 f l f3s in009t+292+ V 5) 
_+ V/3[f  2 91 + f J  9 3 

+ A f 3 c o s  0 0 #  + 95)] 0 = 2nwl 
Nickel arsenide h - k = 3 m  l =  0 4(f t  +f3) 2 

2n :# 0 4(f~ + f~  + 2fir3 cos O) 
2 n +  1 0 

/9 = 27rwl 

Iodine/gallium 

02 = 2nvk, 82 = 2nwl 

Lead oxide 

0 = 2fowl 

p-Neptunium 

3 m +  1 0 (f, - 2A) ' 
2n * 0 f 2  + 4f~ - 4fir3 cos 0 

2 n +  1 3f  2 

l = 0  k = 0  h = 2 n  64f 2 
2 n +  1 0 

:# 0 2n 32f2(1 + cos 202) 
2 n +  1 0 

:/:0 = 0  h + l = 2 n  32f2( 1 + cos 282) 
2 n +  1 0 

:/: 0 2n 16f2(1 + cos 202)(1 + cos 203) 

2 n +  1 16 f2 (1 -  cos 2 8 2 ) ( 1 -  cos282) 

h = 2m k = 2n l = 0 4 ( f  1 +f3) 2 
2m + 1 2n + 1 4(f ,  - f 3 )  2 
2m 2n :/: 0 4(f ,  cos 0 +f3)  2 

2n + 1 4 f  2 sin 2 8 

2m + 1 2n 4 f  2 sin 2 O 

2n + 1 4( A cos O--A)  2 

h = 2m k = 2n l = 0 16f 2 
2 n +  1 0 

2m + 1 2n 0 
2 n +  1 0 

2m 2n =# 0 4f2(1 + cos 0) 2 
2n + 1 4 f  2 sin 2 0 

2m + I 2n 4 f  2 sin 2 O 
2n + 1 4f2(1 - cos 0) 2 

O = 2fowl 

phenomenon. In such cases the actual movements of 
sublattices is crucial to understanding the observations. 
These movements canot be deduced from macroscopic 
elasticity alone and recourse must be had to internal 
strain tensors. 

4f, f 3 sin 0 (9  t + 292 + 9 3) 

; v~A(A - 2A) 9 ~ 
- 2 f ,  f3 sin 009 ~ + 292 + 93) 

¥ ~/3f, Cf, -- 2f 3 cos 0) 9 '  
+_ v/3f  , ( f  t v/' -- 2f3 cos 093) 

-8./" 2 sin 282 92 

8f  2 sin 203 # 

--4f2{sin 282(1 + cos 283) 92 
-- sin 283(1 + cos 282) 9 4 } 

4f2{sin 282(1 - cos 282) 92 
- sin 203(1 - cos 202) 94} 

-4f~ sin 00f~ cos 0 +f3)(9 2 - 9 4) 
4ft sin O{(f~ cos O - f 3 )  9 2 

- (A cos 0 +A) ~ }  
4fl sin 8{(f~ cos 8 +f3) 9 2 

-- (fl  cos 0 --f3) ~ °# } 
-4f ,  sm 00A cos O-A)(9" - # )  

I am grateful for a period as Guest Professor at 
Physics Laboratory II, H. C. Orsted Institute, 
Copenhagen University during which part of this work 
was completed. 

Q 
2f2(91 + 93) 2 

2{ f~ (9 ' )  2 + f~(93) 2 
+ 2 f i r  ~ cos 091 9 3 } 

Q 

2{: : (9 ' )  2 + :d(9 ' )  2 
+ 2A A cos e #  C } 

--8f2[(92) 2 + (94) 2] 

0 

4f2(1 -- COS 202)(94) 2 

4f2(1 -- COS 203)(I//2) 2 

4 f  2 sin/7(1 + cos 8) V 1 
- 4 f  2 sin 00cos 091 - 93) 
--4./" 2 sin 0(cos e91 + 93) 
- 4 f  2 sin 001 - cos 8) 91 

Q 
2 f 2 ( 9 1 -  93) 2 
2f2(91 + 93) 2 
Q 
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Abstract 

The sin O/~, dependence of the scattering factor for 0 2- is 
approximated by the generally used exponential expression 
using nine coefficients. The corresponding fit is better than 
either of the two based upon the functions proposed by 
Tokonami. 

A comparison of the theoretical 0 2- form factor with 
experimental measurement by Raccah & Arnott (1967) 
indicates that the atomic scattering factor for 0 2- given by 
Tokonami (1965) is a reasonable one.* The factor is based 
on calculations by Yamashita [1964, cited by Tokonami 
(1965)] who used the ls and 2s wave functions of Watson 
(1958) for oxygen in a + 1 well and derived the 2p function 
by a variational principle. 

The analytical expressions (one for the Cu Ka range and 
one for the Mo Ka range) suggested by Tokonami (1965) 
yield, however, a poor fit. It was therefore decided to develop 
a better analytical expression based on the generally used 
fitting curve with nine coefficients. 

Results 

The nine coefficients for the expression 

4 

Y. ai e-btslnzO/A2 + c 
1=1 

were obtained by a least-squares routine. Use was made of 
the E04HFE program of the NAG Library (1978) which is 
based on a Gauss-Newton algorithm for finding a minimum 

* Various other calculations are known (Schwarz & Schulz, 
1978; Schmidt & Weiss, 1979; Schmidt, Sen & Weiss, 1980), but it 
is beyond the scope of this paper to compare them. 

0567-7394/83/020268-02501.50 

of a sum of squares of non-linear functions. As starting 
values the coefficients for O, tabulated in International 
Tables for X-ray Crystallography (1974), were supplied. 

Table 1 contains the coefficients, calculated by the 
program, and Table 2 gives a comparison between (a) 

nine coefficients of the analytical expression 
Table 1. T4he e-b,sin2°m + c for the 02-form factor 

i=1 

a I 3.75040 b I 16.5151 
a z 2.84294 b 2 6.59203 
a 3 1.54298 b 3 0.319201 
a 4 1.62091 b 4 43.3486 

c 0.242060 

Table 2. Comparison between the different fitting curves and 
the scattering factor ( f )  of O 2- 

Fit Fit Cu Kct Fit Mo Kct 
(present range range 

sin 0/2 f work) (Tokonami) (Tokonami) 

0.00 10.000 9.999 9-99 9.93 
0.05 9.633 9.633 9.63 9-61 
0.10 8.671 8.672 8.69 8.72 
0.15 7.423 7.423 7-43 7.50 
0.20 6.174 6.173 6.17 6.21 
0.25 5.081 5.081 5.07 5.05 
0.30 4.192 4.193 4.19 4.12 
0.35 3.498 3.498 3.51 3.44 
0.40 2.968 2.967 2.98 2.95 
0.50 2.274 2.274 2.27 2.33 
0.60 1.891 1.892 1.88 1.94 
0.70 1.676 1.675 - 1.67 
0.80 1.543 1.542 - 1.49 
0.90 1.447 1.447 - 1.38 
1.00 1.367 1.367 - 1.32 
1.10 1.291 1.292 - 1-29 
1.20 1.216 1.217 - 1.28 
1.30 I. 142 1.142 - 1-27 
1.50 0.995 0.994 - - 
1.70 0.856 0.855 - - 
1.90 0.729 0.729 - - 
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